已知 $a$ 是常数,且矩阵 $A=\left(\begin{array}{ccc}1 & 2 & a \\ 1 & 3 & 0 \\ 2 & 7 & -a\end{array}\right)$ 可经初等列变换化为矩阵 $B=\left(\begin{array}{ccc}1 & a & 2 \\ 0 & 1 & 1 \\ -1 & 1 & 1\end{array}\right)$.
(1)求 $a$ ;
(2)求满足 $\boldsymbol{A P}=\boldsymbol{B}$ 的可逆矩阵 $\boldsymbol{P}$.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$