科数网
题号:17278    题型:解答题    来源:2017年全国硕士研究生招生统一考试数学试题及详细参考解答(数三)
若 $a_0=1, a_1=0, a_{n+1}=\frac{1}{n+1}\left(n a_n+a_{n-1}\right)$ , $(n=1,2,3, \cdots) , S(x)$ 为幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数
(1) 证明 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径不小于 1 ;
(2) 证明 $(1-x) S^{\prime}(x)-x S(x)=0(x \in(-1,1))$ ,并求 $S(x)$ 的表达式
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP