设随机变量 $\boldsymbol{X}, \boldsymbol{Y}$ 相互独立,且 $\boldsymbol{X}$ 的概率分布为
$$
P\{X=0\}=P\{X=2\}=\frac{1}{2}
$$
$\boldsymbol{Y}$ 的概率概率密度为
$$
f(y)=\left\{\begin{array}{l}
2 y, 0 < y < 1, \\
0, \text { 其他. }
\end{array}\right.
$$
(1)求 $P\{\boldsymbol{Y} \leq \boldsymbol{E} Y\}$ ;
(2)求 $Z=X+Y$ 的概率密度.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$