已知矩阵 $A=\left(\begin{array}{ccc}0 & -1 & 1 \\ 2 & -3 & 0 \\ 0 & 0 & 0\end{array}\right)$
(1) 求 $A^{99}$ ;
(2) 设 3 阶矩阵 $B=\left(\alpha_1, \alpha_2, \alpha_3\right)$ 满足 $B^2=B A$. 记 $B^{100}=\left(\beta_1, \beta_2, \beta_3\right)$ , 将 $\beta_1, \beta_2, \beta_3$ 分别表示成 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$