设 $A=\left(\begin{array}{rrrr}1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3\end{array}\right) , E$ 为 3 阶单位矩阵.
(1) 求方程组 $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ 的一个基础解系;
(2) 求满足 $\boldsymbol{A B}=\boldsymbol{E}$ 的所有矩阵 $B$.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$