设函数 $f(x)=\frac{x}{1+x}, x \in[0,1]$ ,定义函数列:
$$
f_1(x)=f(x), f_2(x)=f\left(f_1(x)\right), \cdots, f_n(x)=f\left(f_{n-1}(x)\right), \ldots
$$
记 $S_n$ 是由曲线 $y=f_n(x)$ 、直线 $x=1$ 及 $x$ 轴所围平面图形的面积,求极限 $\lim _{n \rightarrow \infty} n S_n$.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$