设函数 $f(u)$ 具有二阶连续导数, $z=f\left(e^x \cos y\right)$ 满足
$$
\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=\left(4 z+e^x \cos y\right) e^{2 x}
$$
若 $f(0)=0, f^{\prime}(0)=0$ ,求 $f(u)$ 的表达式.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$