科数网
题号:16348    题型:解答题    来源:2023年复旦大学高等代数每周一题试题答案与解析 -谢启鸿编著
设 $S=\left\{(a, b) \in \mathbb{R}^2 \mid a^2+b^2=1\right.$ 且 $\left.b \neq 1\right\}$, 定义映射 $\varphi: S \rightarrow \mathbb{R}$, $\varphi(a, b)=\frac{a}{1-b}$.
(1) 验证 $\varphi: S \rightarrow \mathbb{R}$ 是 个双射;
(2) 请在 $S$ 上定义加法 $\oplus$ 和数乘 $\circ$, 使 $(S, \oplus, \circ)$ 成为实数域 $\mathbb{R}$ 上的线性空间, H $\varphi: S \rightarrow \mathbb{R}$ 成为线性同构.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP