设函数 $u=f(x, y)$ 具有二阶连续偏导数,且满足等式
$$
4 \frac{\partial^2 u}{\partial x^2}+12 \frac{\partial^2 u}{\partial x \partial y}+5 \frac{\partial^2 u}{\partial y^2}=0 ,
$$
确定 $a, b$ 的值,使等式在变换 $\xi=x+a y, \eta=x+b y$ 下化简为 $\frac{\partial^2 u}{\partial \xi \partial \eta}=0$.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$