• 试题 ID 16219


$\lim _{x \rightarrow \infty} \sum_{i=1}^n \sum_{j=1}^n \frac{n}{(n+i)\left(n^2+j^2\right)}=$
A $\int_0^1 \mathrm{~d} x \int_0^x \frac{1}{(1+x)\left(1+y^2\right)} \mathrm{d} y$
B $\int_0^1 \mathrm{~d} x \int_0^x \frac{1}{(1+x)(1+y)} \mathrm{d} y$
C $\int_0^1 \mathrm{~d} x \int_0^1 \frac{1}{(1+x)(1+y)} \mathrm{d} y$
D $\int_0^1 d x \int_0^1 \frac{1}{(1+x)\left(1+y^2\right)} \mathrm{d} y$
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见