设 $X_1, X_2, \cdots, X_n$ 是来自总体 $N\left(\mu, \sigma^2\right)$ 的简单随机样本,
$$
\begin{aligned}
\text { 记 } \bar{X}=\frac{1}{n} \sum_{i=1}^n X_i, \quad S^2 & =\frac{1}{n-1} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2, \\
T & =\bar{X}^2-\frac{1}{n} S^2
\end{aligned}
$$
(I) 证明 $T$ 是 $\mu^2$ 的无偏估计量;
(II) 当 $\mu=0, \sigma=1$ 时,求 $D(T)$.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$