设随机变量 $\boldsymbol{X}$ 与 $Y$ 相互独立, $\boldsymbol{X}$ 的概率分布为
$$
P\{X=i\}=\frac{1}{3}(i=-1,0,1) ,
$$
$\boldsymbol{Y}$ 的概率密度为
$$
f_{\mathrm{y}}(y)=\left\{\begin{array}{l}
1,0 \leq y < 1 \\
0, \text { 其他 }
\end{array}\right. \text {, }
$$
记 $Z=X+Y$.
(1) 求 $P\left\{\left.Z \leq \frac{1}{2} \right\rvert\, X=0\right\}$;
(2) 求 $Z$ 的概率密度 $f_Z(z)$.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$