设 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 均为 $n$ 维列向量, $A$ 是 $m \times n$ 矩阵,下列选项正确的是
$\text{A.}$ 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则 $A \alpha_1, A \alpha_2, \cdots, A \alpha_s$ 线性相关.
$\text{B.}$ 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则 $A \alpha_1, A \alpha_2, \cdots, A \alpha_s$ 线性无关.
$\text{C.}$ 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则 $A \alpha_1, A \alpha_2, \cdots, A \alpha_s$ 线性相关.
$\text{D.}$ 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则 $A \alpha_1, A \alpha_2, \cdots, A \alpha_s$ 转性无关.