科数网
题号:15764    题型:解答题    来源:2005年全国硕士研究生招生统一考试数学试题及详细参考解答(数三)
设 $f(x), g(x)$ 在 $[0,1]$ 上的导数连续,且 $f(0)=0$ , $f^{\prime}(x) \geq 0 , g^{\prime}(x) \geq 0$. 证明:对任何 $a \in[0,1]$ ,有
$$
\int_0^a g(x) f^{\prime}(x) \mathrm{d} x+\int_0^1 f(x) g^{\prime}(x) \mathrm{d} x \geq f(a) g(1) .
$$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP