科数网
题号:15624    题型:单选题    来源:2004年全国硕士研究生招生统一考试数学试题及详细参考解答(数一)
把 $x \rightarrow 0^{+}$时的无穷小量
$$
\alpha=\int_0^x \cos t^2 \mathrm{~d} t, \beta=\int_0^{x^2} \tan \sqrt{t} \mathrm{~d} t, \gamma=\int_0^{\sqrt{x}} \sin t^3 \mathrm{~d} t ,
$$

排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
$\text{A.}$ $\alpha, \beta, \gamma$ $\text{B.}$ $\alpha, \gamma, \beta$ $\text{C.}$ $\beta, \alpha, \gamma$ $\text{D.}$ $\beta, \gamma, \alpha$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP