11、设 $A$ 是 $n$ 阶矩阵, $\alpha$ 是 $n$ 维列向量. 若秩 $\left(\begin{array}{ll}A & \alpha \\ \alpha^T & 0\end{array}\right)=$ 秩
$(A)$ ,则线性方程组
$\text{A.}$ $\boldsymbol{A X}=\alpha$ 必有无穷多解
$\text{B.}$ $A X=\alpha$ 必有惟一解
$\text{C.}$ $\left(\begin{array}{cc}A & \alpha \\ \alpha^T & 0\end{array}\right)\binom{X}{y}=0$ 仅有零解
$\text{D.}$ $\left(\begin{array}{cc}A & \alpha \\ \alpha^T & 0\end{array}\right)\binom{X}{y}=0$ 必有非零解