科数网
试题 ID 15343
【所属试卷】
2000年全国硕士研究生招生统一考试数学试题及详细参考解答(数一)
设函数 $f(x)$ 在 $[0, \pi]$ 上连续,且
$$
\int_0^\pi f(x) \mathrm{d} x=0, \int_0^\pi f(x) \cos x \mathrm{~d} x=0 .
$$
试证:在 $(0, \pi)$ 内至少存在两个不同的点 $\xi_1, \xi_2$ ,使 $f\left(\xi_1\right)=f\left(\xi_2\right)=0$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设函数 $f(x)$ 在 $[0, \pi]$ 上连续,且
$$
\int_0^\pi f(x) \mathrm{d} x=0, \int_0^\pi f(x) \cos x \mathrm{~d} x=0 .
$$
试证:在 $(0, \pi)$ 内至少存在两个不同的点 $\xi_1, \xi_2$ ,使 $f\left(\xi_1\right)=f\left(\xi_2\right)=0$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见