科数网
题号:15211    题型:单选题    来源:1998年全国硕士研究生招生统一考试数学试题及详细参考解答(数二)
设函数 $f(x)$ 在 $x=a$ 的某个领域内连续,且 $f(a)$ 为极大值,则存在 $\delta>0$ ,当 $x \in(a-\delta, a+\delta)$ 时,必有
$\text{A.}$ $(x-a)[f(x)-f(a)] \geq 0$ $\text{B.}$ $(x-a)[f(x)-f(a)] \leq 0$ $\text{C.}$ $\lim _{t \rightarrow a} \frac{f(t)-f(x)}{(t-x)^2} \geq 0(x \neq a)$ $\text{D.}$ $\lim _{t \rightarrow a} \frac{f(t)-f(x)}{(t-x)^2} \leq 0(x \neq a)$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP