科数网
试题 ID 15114
【所属试卷】
1997年全国硕士研究生招生统一考试数学试题及详细参考解答(数一)
计算曲线积分 $\oint_C(z-y) \mathrm{d} x+(x-z) \mathrm{d} y+(x-y) \mathrm{d} z$ ,其中 $C$ 是曲线 $\left\{\begin{array}{c}x^2+y^2=1 \\ x-y+z=2\end{array}\right.$ ,
从 $z$ 轴正向往 $z$ 轴负向看, $C$ 的方向是顺时针的.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
计算曲线积分 $\oint_C(z-y) \mathrm{d} x+(x-z) \mathrm{d} y+(x-y) \mathrm{d} z$ ,其中 $C$ 是曲线 $\left\{\begin{array}{c}x^2+y^2=1 \\ x-y+z=2\end{array}\right.$ ,
从 $z$ 轴正向往 $z$ 轴负向看, $C$ 的方向是顺时针的.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见