设线性方程组 $\left\{\begin{array}{l}x_1+a_1 x_2+a_1^2 x_3=a_1^3 \\ x_1+a_2 x_2+a_2^2 x_3=a_2^3 \\ x_1+a_3 x_2+a_3^2 x_3=a_3^3 \\ x_1+a_4 x_2+a_4^2 x_3=a_4^3\end{array}\right.$.
(1) 证明: 若 $a_1, a_2, a_3, a_4$ 两两不相等,则此方程组无解;
(2) 设 $a_1=a_3=k, a_2=a_4=-k(k \neq 0)$ ,且已知 $\beta_1, \beta_2$
是该方程组的两个解,其中 $\beta_1=\left[\begin{array}{l}-1 \\ 1 \\ 1\end{array}\right], \beta_2=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$
写出通解
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$