设 $f(x)$ 为连续函数,且 $F(x)=\int_{\frac{1}{x}}^{\ln x} f(t) \mathrm{d} t$ ,则 $F^{\prime}(x)$ 等于
$\text{A.}$ $\frac{1}{x} f(\ln x)+\frac{1}{x^2} f\left(\frac{1}{x}\right)$
$\text{B.}$ $f(\ln x)+f\left(\frac{1}{x}\right)$
$\text{C.}$ $\frac{1}{x} f(\ln x)-\frac{1}{x^2} f\left(\frac{1}{x}\right)$
$\text{D.}$ $f(\ln x)-f\left(\frac{1}{x}\right)$