科数网
题号:14924    题型:单选题    来源:1993年全国硕士研究生招生统一考试数学试题及详细参考解答(数三)
设 $f(x)$ 为连续函数,且 $F(x)=\int_{\frac{1}{x}}^{\ln x} f(t) \mathrm{d} t$ ,则 $F^{\prime}(x)$ 等于
$\text{A.}$ $\frac{1}{x} f(\ln x)+\frac{1}{x^2} f\left(\frac{1}{x}\right)$ $\text{B.}$ $f(\ln x)+f\left(\frac{1}{x}\right)$ $\text{C.}$ $\frac{1}{x} f(\ln x)-\frac{1}{x^2} f\left(\frac{1}{x}\right)$ $\text{D.}$ $f(\ln x)-f\left(\frac{1}{x}\right)$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP