科数网
题号:14789    题型:单选题    来源:1991年全国硕士研究生招生统一考试数学试题及详细参考解答(数二)
设函数 $f(x)=\left\{\begin{array}{cc}x^2 & 0 \leq x \leq 1 \\ 2-x & 1 < x \leq 2\end{array}\right.$ ,记$F(x)=\int_0^x f(t) \mathrm{d} t, 0 \leq x \leq 2$, 则
$\text{A.}$ $F(x)=\left\{\begin{array}{cl}\frac{x^3}{3}, & 0 \leq x \leq 1 \\ \frac{1}{3}+2 x-\frac{x^2}{2}, & 1 < x \leq 2\end{array}\right.$ $\text{B.}$ $F(x)=\left\{\begin{array}{cc}\frac{x^3}{3}, & 0 \leq x \leq 1 \\ -\frac{7}{6}+2 x-\frac{x^2}{2}, 1 < x \leq 2\end{array}\right.$ $\text{C.}$ $F(x)=\left\{\begin{array}{cr}\frac{x^3}{3}, & 0 \leq x \leq 1 \\ \frac{x^3}{3}+2 x-\frac{x^2}{2}, 1 < x \leq 2\end{array}\right.$ $\text{D.}$ $F(x)=\left\{\begin{array}{c}\frac{x^3}{3}, \quad 0 \leq x \leq 1 \\ 2 x-\frac{x^2}{2}, 1 < x \leq 2\end{array}\right.$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP