科数网
试题 ID 14713
【所属试卷】
1989年全国硕士研究生招生统一考试数学试题及详细参考解答(数三)
求二重积分 $I=\iint_D \frac{1-x^2-y^2}{1+x^2+y^2} \mathrm{~d} x \mathrm{~d} y$ ,其中 $D$ 是 $x^2+y^2=1, x=0, y=0$ 所围成的区域在第 $I$ 象限部分.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
求二重积分 $I=\iint_D \frac{1-x^2-y^2}{1+x^2+y^2} \mathrm{~d} x \mathrm{~d} y$ ,其中 $D$ 是 $x^2+y^2=1, x=0, y=0$ 所围成的区域在第 $I$ 象限部分.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见