设函数 $f(x)$ 具有二阶连续导数,且 $f(0)=1, f^{\prime}(0)=1$.假设对任意光滑闭曲面 $\boldsymbol{\Sigma}$ ,恒有
$$
\oint_{\Sigma}\left[f^{\prime}(x)+x^2\right] \mathrm{d} y \mathrm{~d} z+(z+1) f(x) \mathrm{d} x \mathrm{~d} y=0 .
$$
试求 $f(x)$ 的表达式.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$