科数网
试题 ID 13783
【所属试卷】
王普2023年考研数学冲刺模拟卷第一套(数三)
设函数 $f(x)$ 在区间 $[0, \pi]$ 上 连续. 且满足 $f(x)+\int_0^x t f(x-t) \mathrm{d} t=x$, 区域 $D$ 是由曲线 $y=$ $f(x)$ ' $^{\prime} y=f(2 x)$ | $y$ 成的平面图形.求 $D$ 的面积及 $D$ 绕 $x$ 轴旋转一周所成旋转体的体积.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设函数 $f(x)$ 在区间 $[0, \pi]$ 上 连续. 且满足 $f(x)+\int_0^x t f(x-t) \mathrm{d} t=x$, 区域 $D$ 是由曲线 $y=$ $f(x)$ ' $^{\prime} y=f(2 x)$ | $y$ 成的平面图形.求 $D$ 的面积及 $D$ 绕 $x$ 轴旋转一周所成旋转体的体积.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见