科数网
题号:13566 题型:解答题 来源:张宇2023年全国硕士研究生招生科数数学二预测卷一卷
设函数 $f(x)$ 可微, 曲线 $y=f(x)$ 在点 $(1, f(1))$ 处的切线方程为 $y=x-1$, 求极限
$$
\lim _{x \rightarrow 0} \frac{\int_0^x \mathrm{e}^t f\left(1+\mathrm{e}^x-\mathrm{e}^t\right) \mathrm{d} t}{1-\sqrt{1+3 x^2}}
$$
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$
0 人点赞
115 次查看
白板
加入试卷
答案:
解析:
答案与解析:
答案仅限会员可见
微信内自动登录
或
手机登录
或
微信扫码注册登录
点击我要
开通VIP