科数网
试题 ID 13407
【所属试卷】
高数(上)期末模拟试卷及详解(第一套)
(1) 设 $f(x)$ 在 $[a, b]$ 上连续,证明: $\int_a^b f(x) d x=\int_a^b f(a+b-x) d x$
(2) 在 (1) 的条件下,若 $x=\frac{a+b}{2}$ 为 $f(x)$ 的对称轴
证明: $\int_a^b x f(x) d x=\frac{a+b}{2} \int_a^b f(x) d x$
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
(1) 设 $f(x)$ 在 $[a, b]$ 上连续,证明: $\int_a^b f(x) d x=\int_a^b f(a+b-x) d x$
(2) 在 (1) 的条件下,若 $x=\frac{a+b}{2}$ 为 $f(x)$ 的对称轴
证明: $\int_a^b x f(x) d x=\frac{a+b}{2} \int_a^b f(x) d x$
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见