设 $\boldsymbol{A}$ 为 $n$ 阶矩阵,下列命题正确的有
(1) 若 $\boldsymbol{\alpha}$ 为 $\boldsymbol{A}^{\mathrm{T}}$ 的特征向量, 则 $\boldsymbol{\alpha}$ 必为 $\boldsymbol{A}$ 的特征向量
(2) 若 $\boldsymbol{\alpha}$ 为 $\boldsymbol{A}^*$ 的特征向量, 则 $\boldsymbol{\alpha}$ 必为 $\boldsymbol{A}$ 的特征向量
(3) 若 $\boldsymbol{\alpha}$ 为 $\boldsymbol{A}^2$ 的特征向量, 则 $\boldsymbol{\alpha}$ 必为 $\boldsymbol{A}$ 的特征向量
(4) 若 $\boldsymbol{\alpha}$ 为 $k \boldsymbol{A}(k \neq 0)$ 的特征向量, 则 $\boldsymbol{\alpha}$ 必为 $\boldsymbol{A}$ 的特征向量
$\text{A.}$ 1个
$\text{B.}$ 2个
$\text{C.}$ 3个
$\text{D.}$ 4个