科数网
题号:13219    题型:解答题    来源:2024年郑州大学高等代数考研真题及参考解答
设 $V=\mathbb{P}^{2 \times 2}$ 是数域 $\mathbb{P}$ 上的线性空间,记 $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in V$ ,线性变换: $\sigma: X \mapsto A X, \forall X \in \mathbb{P}^{2 \times 2}$.
(1) 求线性变换 $\sigma$ 在基:
$$
E_{11}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{12}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), E_{21}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), E_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

下的矩阵.
(2)如果 $A$ 相似于对角矩阵,证明:线性变换 $\sigma$ 在 $V$ 的某组基下的矩阵是对角矩阵.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP