科数网
题号:13097    题型:单选题    来源:小侯七老师考研数学三预测卷(数三)第二套
已知 $f(x)=\frac{\ln \left(1+x^3\right)}{x-|\ln (1+x)|} \cdot \frac{\mathrm{e}^{\frac{1}{x-1}}+\mathrm{e}^{x-1}}{\mathrm{e}^{\frac{1}{x-1}}-\mathrm{e}^{x-1}}$, 则下列说法正确的是
$\text{A.}$ $f(x)$ 有一个跳跃间断点,一个可去间断点和一个无穷间断点 $\text{B.}$ $F_1(x)=\left\{\begin{array}{ll}f(x), & x \neq 0 \text { 且 } x \neq 1, \\ 1, & x=0 \text { 或 } x=1\end{array}\right.$ 在闭区间 $\left[-\frac{1}{2}, \frac{3}{2}\right]$ 上有界 $\text{C.}$ $F_1(x)=\left\{\begin{array}{ll}f(x), & x \neq 0 \text { 且 } x \neq 1, \\ 1, & x=0 \text { 或 } x=1\end{array}\right.$ 在开区间 $\left(-\frac{1}{2}, \frac{3}{2}\right)$ 内不可积 $\text{D.}$ 记 $F(x)=\int_0^x f(t) \mathrm{d} t$, 则 $F(x)$ 在开区间 $\left(-1, \frac{1}{2}\right)$ 内可导
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP