科数网
题号:12933    题型:解答题    来源:2025年硕士研究生入学考试模拟试卷王普老师命题(数一)
设 $\Omega \subset \mathbf{R}^3$ 是有界闭区域, $I(\Omega)=\iiint_{\Omega}\left(x^2+\frac{y^2}{4}+\frac{z^2}{9}-1\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z$ 取得最小值的积分域记为 $\Omega_1$.
(I) 求 $I\left(\Omega_1\right)$ 的值;
(II) 计算 $\iint_{\Sigma} \frac{x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y}{\left(x^2+2 y^2+3 z^2\right)^{\frac{3}{2}}}$, 其中 $\Sigma$ 是 $\Omega_1(z \geqslant 0)$ 的上侧边界.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP