• 试题 ID 12916


设函数 $f(x)$ 具有 2 阶导数, 且 $f(x)>0, f^{\prime \prime}(x) f(x)-\left[f^{\prime}(x)\right]^2>0$, 则
A $f^{\prime}(-1) f(1)>f^{\prime}(1) f(-1)$.
B $f^{\prime}(1) f(1) < f^{\prime}(-1) f(-1)$.
C $f^2(0)>f(-1) f(1)$.
D $f^2(0) < f(-1) f(1)$.
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见