关于函数 $f(x, y)=\left\{\begin{array}{cl}|x-y|^a \frac{\sin x y^2}{x^2+y^4}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0),\end{array}\right.$ 给出以下结论:
(1) 当 $\alpha>0$ 时, $f(x, y)$ 在点 $(0,0)$ 处连续, 且偏导数存在;
(2) 当 $\alpha \geqslant 1$ 时, $f(x, y)$ 在点 $(0,0)$ 处可微;
(3) 当 $\alpha>2$ 时, $f_x^{\prime}(x, y)$ 在点 $(0,0)$ 处连续;
(4) 当 $\alpha>0$ 时, $f(x, y)$ 在点 $(0,0)$ 处沿任意方向的方向导数均存在.
其中正确的个数为
$\text{A.}$ 4
$\text{B.}$ 3
$\text{C.}$ 2
$\text{D.}$ 1