科数网
题号:12438    题型:填空题    来源:乌鲁木齐地区2024年高三年级第一次质量监测
设双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0, b>0)$ 的左、右焦点分别为 $F_1, F_2, A$ 是右支上一点, 满足 $A F_1 \perp A F_2$, 直线 $A F_2$ 交双曲线于另一点 $B$, 且 $\left|B F_1\right|-\left|A F_1\right|=2 a$, 则双曲线离心率的一个值为
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP