科数网
试题 ID 12305
【所属试卷】
合工大超越五套卷数一答案(数一,2021版)
设 $0 < x < \frac{\pi}{2}$, 证明:
( I ) 函数 $f(x)=\frac{\ln \left(x+\sqrt{x^2+1}\right)}{\sin x}$ 单调递增;
( II ) $\ln \left(x+\sqrt{x^2+1}\right)>\sin x$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $0 < x < \frac{\pi}{2}$, 证明:
( I ) 函数 $f(x)=\frac{\ln \left(x+\sqrt{x^2+1}\right)}{\sin x}$ 单调递增;
( II ) $\ln \left(x+\sqrt{x^2+1}\right)>\sin x$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见