科数网
试题 ID 11863
【所属试卷】
微信公众号《数学蓝染》每日一题
设 $f(x)=a \int_0^{\sin x}\left(e^{t^2}-1\right) \mathrm{d} t, x^b \ln (1+x)$ 是 $g(x)$ 的一个原函数, 若 $x \rightarrow 0$ 时, $f(x)$ 与 $g(x)$ 是等价无穷小, 则 $a+b=$
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $f(x)=a \int_0^{\sin x}\left(e^{t^2}-1\right) \mathrm{d} t, x^b \ln (1+x)$ 是 $g(x)$ 的一个原函数, 若 $x \rightarrow 0$ 时, $f(x)$ 与 $g(x)$ 是等价无穷小, 则 $a+b=$
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见