科数网
题号:11322 题型:填空题 来源:2024届高三八校联盟(T8)联考数学试题
已知双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0, b>0)$ 的左、右焦点分别为 $F_1, F_2$, 若过点 $F_2$ 的直线与双曲线的左、右两支分别交于 $A, B$ 两点, 且 $A F_1=B F_1=2 \sqrt{5}$. 又以双曲线的顶点为圆心, 半径为 $2 \sqrt{2}$ 的圆恰好经过双曲线虚轴的端点, 则双曲线的离心率为
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$
0 人点赞
75 次查看
白板
加入试卷
答案:
解析:
答案与解析:
答案仅限会员可见
微信内自动登录
或
手机登录
或
微信扫码注册登录
点击我要
开通VIP