科数网
试题 ID 11051
【所属试卷】
方浩考研数学模拟试卷(数一)
设 $f(x)$ 二阶可导, $f(1)=1, g(x)$ 为其反函数, $g^{\prime}(1)=g^{\prime \prime}(1)=a \neq 0$, 则 $\left.\left[\frac{\mathrm{d}^2}{\mathrm{~d} x^2} \int_0^{f(x)} \operatorname{tg}(t) \mathrm{d} t\right]\right|_{x=1}=$
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $f(x)$ 二阶可导, $f(1)=1, g(x)$ 为其反函数, $g^{\prime}(1)=g^{\prime \prime}(1)=a \neq 0$, 则 $\left.\left[\frac{\mathrm{d}^2}{\mathrm{~d} x^2} \int_0^{f(x)} \operatorname{tg}(t) \mathrm{d} t\right]\right|_{x=1}=$
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见