科数网
题号:11049    题型:填空题    来源:方浩考研数学模拟试卷(数一)
设 $r=(x, y, z), r=\sqrt{x^2+y^2+z^2}$, 函数 $f(x)$ 可微, 曲线 $L$ 是一条有限的、不经过坐标原点的单侧光滑曲面 $S$ 的边界曲线, $L$ 的正向与曲面 $S$ 的正向符合右手法则, 则 $\oint_{\text {L. }} \frac{x}{r} f(r) \mathrm{d} x+\frac{y}{r} f(r) \mathrm{d} y+\frac{z}{r} f(r) \mathrm{d} z=$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP