已知二次型 $f\left(x_1, x_2, x_3\right)=\sum_{i=1}^3 \sum_{j=1}^3 i j x_i x_j$. )
(1)写出 $f\left(x_1, x_2, x_3\right)$ 对应的矩阵;
(2)求正交变换 $x=Q y$ 将 $f\left(x_1, x_2, x_3\right)$ 化为标准形;
(3)求 $f\left(x_1, x_2, x_3\right)=0$ 的解.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$