若数列 $\left\{a_n\right\}$ 满足 $\left(2-a_n\right) a_{n+1}=1$, 证明:
(a)存在正整数 $k$, 使得 $a_k \leq 1$.
(b) 数列 $\left\{a_n\right\}$ 存在极限, 并求其极限值.
(c) 若 $a_1 \neq 1$, 则 $a_n(n=1,2, \cdots)$ 两两不等.
(d) 满足题设且 $a_1 \neq 1$ 的数列 $\left\{a_n\right\}$ 存在.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$