科数网
题号:10327 题型:解答题 来源:2024年考研数学模拟试卷(提高篇)
对于任意二阶连续可导的函数 $f(u), z=\int_0^y \mathrm{e}^{t^2} \mathrm{~d} t+f(x+a y)$ 均是方程 $\frac{\partial^2 z}{\partial x \partial y}+\frac{\partial^2 z}{\partial y^2}=2 y \mathrm{e}^{y^2}$ 的解, 求 $a$ 的值.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$
0 人点赞
158 次查看
白板
加入试卷
答案:
解析:
答案与解析:
答案仅限会员可见
微信内自动登录
或
手机登录
或
微信扫码注册登录
点击我要
开通VIP