科数网
试题 ID 10233
【所属试卷】
第十五届大学生数学竞赛初赛试题及参考解答
设 $f(x)$ 在 $[0,1]$ 上有连续的导数且 $f(0)=0$. 求证:
$$
\int_0^1 f^2(x) \mathrm{d} x \leqslant 4 \int_0^1(1-x)^2\left|f^{\prime}(x)\right|^2 \mathrm{~d} x
$$
并求使上式成为等式的 $f(x)$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $f(x)$ 在 $[0,1]$ 上有连续的导数且 $f(0)=0$. 求证:
$$
\int_0^1 f^2(x) \mathrm{d} x \leqslant 4 \int_0^1(1-x)^2\left|f^{\prime}(x)\right|^2 \mathrm{~d} x
$$
并求使上式成为等式的 $f(x)$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见