科数网
题号:10090 题型:解答题 来源:厦门大学2023年数学分析
设 $f(x)$ 在 $[0,1]$ 上二阶连续可微, 且存在 $M>0$, 使得 $\left|f^{\prime \prime}(x)\right| \leq M, x \in[0,1]$. 又设 $f(x)$ 在 $(0,1)$ 内可取到最大值. 证明: $\left|f^{\prime}(0)\right|+\left|f^{\prime}(1)\right| \leq M$.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$
0 人点赞
144 次查看
白板
加入试卷
答案:
解析:
答案与解析:
答案仅限会员可见
微信内自动登录
或
手机登录
或
微信扫码注册登录
点击我要
开通VIP