设 $\mathbb{R}$ 为实数域, $V$ 是以 0 为极限的实数数列全体, 即
$$
V=\left\{\left\{a_n\right\} \mid a_n \in \mathbb{R}, \lim _{n \rightarrow \infty} a_n=0\right\}
$$
在 $V$ 中定义加法与数乘运算: $\left\{a_n\right\}+\left\{b_n\right\}=\left\{a_n+b_n\right\}, k\left\{a_n\right\}=\left\{k a_n\right\}, k \in \mathbb{R}$, 则 $V$ 构成实数域 $\mathbb{R} $上 的线性空间(不需要证明).
请证明: $V$ 是无穷维的线性空间.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$