科数网
试题 ID 10033
【所属试卷】
第十四届大学生数学竞赛初赛(补赛二)试题及解答(非数学类)
设函数 $f(x)=\int_0^x \frac{\ln (1+t)}{1+e^{-t} \sin ^3 t} \mathrm{~d} t,(x>0)$, 证明级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 收敛, 且 $\frac{1}{3} < \sum_{n=1}^{\infty} f\left(\frac{1}{n}\right) < \frac{5}{6}$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设函数 $f(x)=\int_0^x \frac{\ln (1+t)}{1+e^{-t} \sin ^3 t} \mathrm{~d} t,(x>0)$, 证明级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 收敛, 且 $\frac{1}{3} < \sum_{n=1}^{\infty} f\left(\frac{1}{n}\right) < \frac{5}{6}$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见