科数网
试题 ID 10016
【所属试卷】
第十四届全国大学生数学竞赛初赛第二次补赛试卷参考答案 (数学 A 类, 2022 年)
设 $x \in[0,1], y_1=\frac{x}{2}, y_{n+1}=\frac{x-y_n^2}{2}(n \geqslant$ 1). 证明: $\lim _{n \rightarrow+\infty} y_n$ 存在并求其值.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $x \in[0,1], y_1=\frac{x}{2}, y_{n+1}=\frac{x-y_n^2}{2}(n \geqslant$ 1). 证明: $\lim _{n \rightarrow+\infty} y_n$ 存在并求其值.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见