极限

数学

学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 1 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设函数 $f(x)$ 在 $x=a$ 处可导, 则 $\lim _{x \rightarrow a} \frac{f(x) a^3-f(a) x^3}{a^2-x^2}=$
$\text{A.}$ $3 a^2 f^{\prime}(a)+2 f(a)$ $\text{B.}$ $-\frac{a^2}{3} f^{\prime}(a)+\frac{1}{2} f(a)$ $\text{C.}$ $3 a^2 f^{\prime}(a)-\frac{2}{3} f(a)$ $\text{D.}$ $-\frac{a^2}{2} f^{\prime}(a)+\frac{3 a}{2} f(a)$

二、填空题 (共 3 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
$\lim _{x \rightarrow 0} \dfrac{\ln \left(e^{\sin x}+\sqrt[3]{1-\cos x}\right)-\sin x}{\arctan (4 \sqrt[3]{1-\cos x})}=$


极限 $\lim _{x \rightarrow 0} \frac{\arctan x-x}{x-\sin x}=$


$\lim _{x \rightarrow 0} \frac{\tan (\arcsin x)-x}{x^3}=$


三、解答题 ( 共 2 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
求极限 $\lim _{x \rightarrow 0} \frac{\left(1+\frac{1}{2} x^2-\sqrt{1+x^2}\right) \cos x^2}{\cos x-e^{-\frac{x^2}{2}}}$



计算:$\lim _{x \rightarrow 0} \dfrac{x-\int_0^x\left(1+\sin ^2 t\right)^2 \mathrm{~d} t}{x^2 \sin x}$.



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷