单选题 (共 3 题 ),每题只有一个选项正确
设
$$
f(x)=\left\{\begin{array}{l}
\frac{2}{3} x^3, x \leq 1 \\
x^2, x>1
\end{array}\right.
$$
则 $f(x)$ 在 $x=1$ 处的
$\text{A.}$ 左,右导数都存在.
$\text{B.}$ 左导数存在,右导数不存在.
$\text{C.}$ 左导数不存在,右导数存在.
$\text{D.}$ 左,右导数都不存在.
设对"$\forall \varepsilon \in(0,1), \exists 一 个$ 正整数 $N$ ,当 $n \geqslant N$ 时,恒有 $\left|x_n-a\right| < 2 \varepsilon$"是 $\lim _{n \rightarrow \infty} x_n=a$ 的
$\text{A.}$ 充分条件
$\text{B.}$ 必要而非充分条件
$\text{C.}$ 充分必要条件
$\text{D.}$ 既非充分又非必要条件。
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 上连续,则 $d\left(\int f(x) d x\right)=$
$\text{A.}$ $f(x)$
$\text{B.}$ $f(x) d x$
$\text{C.}$ $f(x)+C$
$\text{D.}$ $f^{\prime}(x) d x$