函数的基本概念 ☆

数 学



单选题 (共 3 题 ),每题只有一个选项正确


$$
f(x)=\left\{\begin{array}{l}
\frac{2}{3} x^3, x \leq 1 \\
x^2, x>1
\end{array}\right.
$$


则 $f(x)$ 在 $x=1$ 处的

$\text{A.}$ 左,右导数都存在. $\text{B.}$ 左导数存在,右导数不存在. $\text{C.}$ 左导数不存在,右导数存在. $\text{D.}$ 左,右导数都不存在.

设对"$\forall \varepsilon \in(0,1), \exists 一 个$ 正整数 $N$ ,当 $n \geqslant N$ 时,恒有 $\left|x_n-a\right| < 2 \varepsilon$"是 $\lim _{n \rightarrow \infty} x_n=a$ 的
$\text{A.}$ 充分条件 $\text{B.}$ 必要而非充分条件 $\text{C.}$ 充分必要条件 $\text{D.}$ 既非充分又非必要条件。

设函数 $f(x)$ 在 $(-\infty,+\infty)$ 上连续,则 $d\left(\int f(x) d x\right)=$
$\text{A.}$ $f(x)$ $\text{B.}$ $f(x) d x$ $\text{C.}$ $f(x)+C$ $\text{D.}$ $f^{\prime}(x) d x$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷