单选题 (共 3 题 ),每题只有一个选项正确
悬链线 $y=\frac{1}{2}\left(e^x+e^{-x}\right)(-1 \leq x \leq 1)$ 的弧长是( ).
$\text{A.}$ $\frac{1}{2}\left(e-e^{-1}\right)$
$\text{B.}$ $e-e^{-1}$
$\text{C.}$ $2\left(e-e^{-1}\right)$
$\text{D.}$ $4\left(e-e^{-1}\right)$
设 $M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1+x^2} \cos ^4 x \mathrm{~d} x, N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\sin ^3 x+\cos ^4 x\right) \mathrm{d} x, P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^2 \sin ^3 x-\cos ^4 x\right) \mathrm{d} x$ ,则有().
$\text{A.}$ $N < P < M$
$\text{B.}$ $M < P < N$
$\text{C.}$ $N < M < P$
$\text{D.}$ $P < M < N$
已知函数 $f(x)=\left\{\begin{array}{ll}2(x-1), & x < 1 \\ \ln x, & x \geqslant 1\end{array}\right.$ ,则 $f(x)$ 的一个原函数是( )
$\text{A.}$ $F(x)= \begin{cases}(x-1)^2, & x < 1, \\ x(\ln x-1), & x \geqslant 1,\end{cases}$
$\text{B.}$ $F(x)= \begin{cases}(x-1)^2, & x < 1, \\ x(\ln x+1)-1, & x \geqslant 1,\end{cases}$
$\text{C.}$ $F(x)= \begin{cases}(x-1)^2, & x < 1, \\ x(\ln x+1)+1, & x \geqslant 1,\end{cases}$
$\text{D.}$ $F(x)= \begin{cases}(x-1)^2, & x < 1, \\ x(\ln x-1)+1, & x \geqslant 1,\end{cases}$