高等数学单元测试(不定积分与定积分)

数 学



单选题 (共 3 题 ),每题只有一个选项正确
悬链线 $y=\frac{1}{2}\left(e^x+e^{-x}\right)(-1 \leq x \leq 1)$ 的弧长是( ).
$\text{A.}$ $\frac{1}{2}\left(e-e^{-1}\right)$ $\text{B.}$ $e-e^{-1}$ $\text{C.}$ $2\left(e-e^{-1}\right)$ $\text{D.}$ $4\left(e-e^{-1}\right)$

设 $M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1+x^2} \cos ^4 x \mathrm{~d} x, N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\sin ^3 x+\cos ^4 x\right) \mathrm{d} x, P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^2 \sin ^3 x-\cos ^4 x\right) \mathrm{d} x$ ,则有().
$\text{A.}$ $N < P < M$ $\text{B.}$ $M < P < N$ $\text{C.}$ $N < M < P$ $\text{D.}$ $P < M < N$

已知函数 $f(x)=\left\{\begin{array}{ll}2(x-1), & x < 1 \\ \ln x, & x \geqslant 1\end{array}\right.$ ,则 $f(x)$ 的一个原函数是( )
$\text{A.}$ $F(x)= \begin{cases}(x-1)^2, & x < 1, \\ x(\ln x-1), & x \geqslant 1,\end{cases}$ $\text{B.}$ $F(x)= \begin{cases}(x-1)^2, & x < 1, \\ x(\ln x+1)-1, & x \geqslant 1,\end{cases}$ $\text{C.}$ $F(x)= \begin{cases}(x-1)^2, & x < 1, \\ x(\ln x+1)+1, & x \geqslant 1,\end{cases}$ $\text{D.}$ $F(x)= \begin{cases}(x-1)^2, & x < 1, \\ x(\ln x-1)+1, & x \geqslant 1,\end{cases}$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。